Comparative study on mammalian fauna in different harvesting intensities with reduced-impact and conventional logging in Sabah, Malaysia

Go Onoguchi1 and Hisashi Matsubayashi1, 2

1Center for Ecological Research, Kyoto University
2Present, Tokyo University of Agriculture

Introduction
Habitat destruction including logging and forest clearing for agriculture has always been a major threat for most mammals in SE Asia and other parts of tropical regions (Cuaron 2000). Large proportion of tropical forests has already become logged forests, on which much of its biodiversity depends now (Frumoff 1995). We must establish strategy to conserve these threatened animals in production forests as well as those in primary forests (Frumhoff 1995; Johns 1997; Meijaard et al. 2006).

Selective logging is one of the most prevalent land uses in Southeast Asia and other tropical regions. The method is known to severely damage the residual stand and affect forest structure and biodiversity even though only a small proportion of the trees are often removed (Johns 1988; Cannon et al. 1994; Pinard and Putz 1996; Laurance and Laurance 1996).

There are several techniques for controlling and minimizing logging damage (e.g., Crome et al. 1992). One of such methods, reduced-impact logging, is a set of guidelines to reduce the physical impacts on the ground, remaining standing trees, streams and ecosystem as a whole with the combination of a pre-harvest census, carefully controlled felling and skidding, lowered allowable cut and regulated machinery use (RIL; Putz and Pinard 1993).

Some studies examined the effects of reduced-impact logging in retaining forest biomass and in damage reduction to forests in Southeast Asia and reported that reduced-impact logging reduced the damage or injury to residual stand by 27-18\% (Pinard and Putz 1996; Bertault and Sist 1997; Sist et al. 1998). However, there is no study available on mammalian responses to reduced-impact logging (Meijaard et al. 2006), though mammals have important ecological roles such as seed dispersal and/or pollination in the forests.

In this study, we examined the effects of reduced-impact logging on the mammalian fauna by comparing the diversity and the abundance in a reduced-impact
logged forest and a conventionally logged forest in Sabah, Malaysia.

Materials and Methods

Study site

The study was conducted in Deramakot Forest Reserve (55,083ha), a reduced-impact logged forest and adjacent Tangkulap Forest Reserve (27,550ha), a conventionally logged forest, in Sabah, Malaysian Borneo. The climate is humid equatorial with a mean annual temperature of about 26°C. Mean annual rainfall is about 3,500 mm (Huth and Ditzer 2001). The major vegetation of Deramakot is climax species and Dipterocarpaceae dominated, while that of Tangkulap is pioneer species of the genus *Macaranga* (Euphorbiaceae) dominated (Seino et al. 2006).

Focal species and camera trap

Table 1 shows known large to middle sized mammal species in Deramakot (Matsubayashi et al. in press). We focused middle to large mammals because they are more likely to respond to landscape level changes. Species of Chiroptera (bats), Dermoptera (colugo), small Insectivora (shrews), Scandentia (tree shrews), and small Rodentia (squirrels and rats) were excluded from this study. We follow the nomenclature by Payne et al. (1998).

Fourteen camera-traps were placed in the reduced-impact logged forest (7 traps) and the adjacent conventionally logged forest (7 traps) in February-March and August-September, 2006. In each forest cameras were set up along animal trails at intervals of about 1km. We used automatic camera-traps (sensor camera Field note II, Marif, Yamaguchi, Japan) triggered by passive infrared motion sensors. All camera-traps were mounted on trees and set approximately 50cm from the ground, and were baited with durians or chicken, which were hung so high that animals could not consume them easily. All camera-traps operated 24 hours/day or until the film was fully exposed. We checked camera-trap sites every week to replace bait, and changed films and batteries if necessary. Day and time were recorded on each photograph.

We identified each photographed animal to species. As for genera *Muntiacus* (*Muntiacus atherodes* and *Muntiacus muntjak*) and *Tragulus* (*Tragulus napu* and *Tragulus javanicus*), we combined the congeneric species for each because they are indistinguishable on photographs. To exclude repetitive shots within a visit, we defined photographs of the same species within 60 minutes as 1 event. Number of camera-days was calculated for each camera trap. Since photographic rates correlate
with animal density (Carbone et al. 2001), we used number of independent photographs per camera-day as relative-abundance indices (O’Brien 2003). In addition to camera-trap data, simultaneous field observations of larger mammals by night walking, driving census, and trace existence were also added to the species diversity list (Table 1).

We defined CNV/RIL ratio as the ratio between the density index of each animal in the conventionally logged forest and that in the reduced-impact logged forest in order to discuss the relation between diet type and the persistence to heavy disturbance.

Differences in photographic rates between two forests were tested statistically using the Mann-Whitney U tests for each species recorded.

Results

Total study effort was 797 camera-days. Figure 1 shows species accumulation curves in each forest. Total 158 photographs were taken, of which 109 (396 camera-days) were from the reduced-impact logged forest and 49 (401 camera-days) were from the conventionally logged forest. In addition to the photographs of animals, there were 6 human records only in conventionally logged forest.

Camera-trapped mammals were consisted of 19 species, one Insectivora, three Primates, three Rodentia, eight Carnivora, and four Artiodactyla (Table 1). Of these 19 species, 18 species appeared in the reduced-impact logged forest and 11 in the conventionally logged forest (Table 1). Six species including sun bear and clouded leopard were recorded only in the reduced-impact logged site whereas only short-tailed mongoose did not detect in the reduced-impact logged forest.

The most numerous species trapped was mouse-deer *Tragulus* spp. (29 photos) followed by Malay civet *Viverra tangalunga* (27 photos), bearded pig *Sus barbatus* (24 photos), and pig-tailed macaque *Macaca nemestrina* (21 photos). Muntjac *Muntiacus* spp. and pig-tailed macaque *Macaca nemestrina* showed significantly higher photographic rate in the reduced-impact logged forest (*p*<0.05; *p*<0.05), while no species were significantly more common in the conventionally logged forest. Total photographic rate was also significantly larger in the reduced-impact logged site (*p*<0.05). CNV/RIL was lower in frugivorous primates and higher in omnivorous pigs or carnivorous civets.
Discussion

Difference in mammalian fauna and abundance

The forest harvested by reduced-impact logging showed larger species richness than the forest logged conventionally (Table 1). However, the observed difference in the number of detected species may just reflect lower animal density in the conventionally logged forest but not the species number per se. Some comparative studies of mammalian fauna in several paired sites of closely located logged and unlogged forests in Indonesia and Peninsular Malaysia showed that species presence was similar between logged and unlogged forests in an area although slight differences were observed (Johns 1997; Laidlaw 2000; Wilson and Johns 1982).

The results suggest that forests exploited using reduced-impact logging is able to carry higher density of the middle to large mammals compared with forests logged conventionally. A previous study also revealed that the density of Bornean orangutan *Pongo pygmaeus* in our focal reduced-impact logged site, Deramakot was 1.50 individuals/km², which was more than twice as high as 0.62 individuals/km² in the site logged conventionally, Tangkulap (Ancrenaz et al. 2005). Earlier studies have already documented that large mammals in Borneo often come to be less abundant in selectively logged forests (Felton et al. 2003; Heydon and Bullo 1996, 1997).

Effect of difference in habitat quality and human presence

Table 2 shows the summary of results from current and another study in Deramakot and diet type for each species. Among the 6 species listed here, 2 primates are the most fruit-dependent animals, mouse-deer and muntjac are less dependent, and bearded pig and Malay civet are the least. CNV/RIL was lower in frugivorous primates and higher in omnivorous pigs or carnivorous civets. This tendency that more frugivorous animals are more vulnerable to logging and omnivores or carnivores are tolerable indicates that heavy logging reduce fruit production in forest and lessen animal population consequently. It is known that primates’ degree of frugivory negatively correlates with species’ persistence to logging (Johns and Skorupa 1987). Logging activities reduce availability of food resources for frugivores, even where timber trees are not themselves used by animals (Johns 1988; but see Ganzhorn 1995). Poor logging operation in the conventional method may causes the reduction in food resources and negatively affect the abundance of mammals.

In addition to food habitat, Marsh et al. (1987) suggested that degree of territoriality could influence the adaptability of animals. Some primates and civets in
Deramakot were strictly arboreal, although they were hardly recorded in this survey. Increased amount of canopy gap disrupts aerial pathway and arboreal species experience difficulties in locomotion (Johns 1997). Therefore, arboreal mammals can be more susceptible to logging.

Human activities often accompanying logging practices can also affect mammals. It is known that hunting poses great threat to large forest animals in many parts of the tropics (Linkie et al. 2003; Marshall et al. 2006). It is even sometimes greater threat to wildlife than timber harvesting (Bennet et al. 2002; Matthews and Matthews 2002; Walsh et al. 2003). In Deramakot and adjacent Tangkulap, hunting of wildlife is prohibited, but illegal hunting still occurs by villager and outsider. Hunting pressure was higher in Tangkulap, conventionally logged area, because of easier access and insufficient prevention there. Therefore, Sabah Forestry Department has enforced regulation of illegal hunting in Tangkulap area since 2005 (P. Lagan who is a assistant director of Deramakot district, Sabah Forestry Department, pers. comm.).

Reduced-impact logging and regulation of illegal hunting could be maintained food resources for mammals and population of them. It needs further investigation on logging impact on mammals, not only population density but also ecological function such as seed dispersal.

Literature cited

Laidlaw RK (2000) Effects of habitat disturbance and protected areas on mammals of
Peninsular Malaysia. Conservation Biology, 14, 1639-1648.
Payne J, Francis CM, Phillipps K (1985) A field guide to the mammals of Borneo. The Sabah society with world wildlife fund Malaysia, Kota Kinabalu

Table 1. Known middle – large mammals in Deramakot and summary of photographic records from the reduced-impact logged forest (RIL) and the adjacent conventionally logged forest (CNV).

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Genus</th>
<th>Species</th>
<th>Common names</th>
<th>RIL</th>
<th>CNV</th>
<th>IUCN 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSECTIVORA</td>
<td>Erinaceidae</td>
<td>Echinosorex</td>
<td>gymnurus</td>
<td>Moonrat</td>
<td>0.005</td>
<td>N/A</td>
<td>LC</td>
</tr>
<tr>
<td>PRIMATES</td>
<td>Lorisiidae</td>
<td>Nycticebus</td>
<td>coucang</td>
<td>Slow loris</td>
<td>N/A</td>
<td>N/A</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Tarsiidae</td>
<td>Tarsius</td>
<td>bancanus</td>
<td>Western tarsier</td>
<td>0.002</td>
<td>0.002</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Cercopithecidae</td>
<td>Presbytis</td>
<td>rubicunda</td>
<td>Red leaf monkey</td>
<td>N/A</td>
<td>N/A</td>
<td>Not listed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cristata</td>
<td>Silvered langur</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nasalis</td>
<td>larvatus</td>
<td>Proboscis monkey</td>
<td>N/A</td>
<td>N/A</td>
<td>EN A2c, C1+2a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macaca</td>
<td>fascicularis</td>
<td>Long-tailed macaque</td>
<td>0.002</td>
<td>0.002</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nemestrina</td>
<td>Pig-tailed macaque</td>
<td>0.043</td>
<td>0.010</td>
<td>VU A1cd</td>
</tr>
<tr>
<td></td>
<td>Hylobiidae</td>
<td>Hylobates</td>
<td>muelleri</td>
<td>Bornean gibbon</td>
<td>N/A</td>
<td>N/A</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Manidae</td>
<td>Manis</td>
<td>javanica</td>
<td>Pangolin</td>
<td>N/A</td>
<td>N/A</td>
<td>NT</td>
</tr>
<tr>
<td>PHOLIDOTA</td>
<td>Hystricidae</td>
<td>Trichys</td>
<td>fasciculate</td>
<td>Long-tailed porcupine</td>
<td>0.005</td>
<td>N/A</td>
<td>LC</td>
</tr>
<tr>
<td>RODENTIA</td>
<td>Hystrix brachyuran</td>
<td>Common porcupine</td>
<td></td>
<td></td>
<td>0.012</td>
<td>N/A</td>
<td>VU A1d</td>
</tr>
<tr>
<td></td>
<td>Thecurus crassispinis</td>
<td>Thick-spined porcupine</td>
<td></td>
<td></td>
<td>0.008</td>
<td>N/A</td>
<td>NT</td>
</tr>
<tr>
<td>CARNIVORA</td>
<td>Ursidae</td>
<td>Helarctos</td>
<td>malayanus</td>
<td>Sun bear</td>
<td>0.010</td>
<td>N/A</td>
<td>DD</td>
</tr>
<tr>
<td></td>
<td>Mustelidae</td>
<td>Martes</td>
<td>flavigula</td>
<td>Yellow-throated marten</td>
<td>N/A</td>
<td>N/A</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mydaus</td>
<td>javanensis</td>
<td>Malay badger</td>
<td>0.005</td>
<td>0.002</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aonyx</td>
<td>cinerea</td>
<td>Oriental small-clawed otter</td>
<td>N/A</td>
<td>N/A</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Viverridae</td>
<td>Viverra</td>
<td>tangelanga</td>
<td>Malay civet</td>
<td>0.040</td>
<td>0.026</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cynogale</td>
<td>bennetti</td>
<td>Otter-civet</td>
<td>N/A</td>
<td>N/A</td>
<td>EN A1ce, C2a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arctictis</td>
<td>binturong</td>
<td>Binturong</td>
<td>0.008</td>
<td>0.005</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arctogalidia</td>
<td>trivirgata</td>
<td>Small-toothed palm civet</td>
<td>N/A</td>
<td>N/A</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paguma</td>
<td>larvata</td>
<td>Masked Palm civet</td>
<td>N/A</td>
<td>N/A</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paradoxurus</td>
<td>hermaphroditus</td>
<td>Common palm civet</td>
<td>0.010</td>
<td>0.007</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemigalus</td>
<td>derbianus</td>
<td>Banded palm civet</td>
<td>0.003</td>
<td>N/A</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Herpestes</td>
<td>brachyurus</td>
<td>Short-tailed mongoose</td>
<td>N/A</td>
<td>0.002</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Herpestes</td>
<td>semitorquatus</td>
<td>Collared mongoose</td>
<td>N/A</td>
<td>N/A</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Felis</td>
<td>nebulosa</td>
<td>Clouded leopard</td>
<td>0.002</td>
<td>N/A</td>
<td>VU C2a(i)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prionailurus</td>
<td>planiceps</td>
<td>Flat-headed cat</td>
<td>N/A</td>
<td>N/A</td>
<td>VU C2a(i)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prionailurus</td>
<td>bengalensis</td>
<td>Leopard cat</td>
<td>N/A</td>
<td>N/A</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>ARTIODACTYLA</td>
<td>Elephantidae</td>
<td>maximus</td>
<td>Asian elephant</td>
<td>N/A</td>
<td>N/A</td>
<td>EN A1cd</td>
</tr>
<tr>
<td></td>
<td>Suidae</td>
<td>Sus</td>
<td>barbatus</td>
<td>Bearded pig</td>
<td>0.040</td>
<td>0.019</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Tragulidae</td>
<td>Tragulus</td>
<td>javanicus</td>
<td>Lesser mouse-deer</td>
<td>0.050"</td>
<td>0.025"</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>napu</td>
<td>Greater mouse-deer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cervidae</td>
<td>Muntiacus</td>
<td>atherodes</td>
<td>Bornean yellow muntjac</td>
<td>0.025"</td>
<td>N/A</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muntiacus</td>
<td>muntjak</td>
<td>Red muntjac</td>
<td></td>
<td></td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cervus</td>
<td>unicolor</td>
<td>Sambar deer</td>
<td>0.005</td>
<td>0.003</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Bovidae</td>
<td>Bos</td>
<td>javanicus</td>
<td>Tembadau / Banteng</td>
<td>N/A</td>
<td>N/A</td>
<td>EN A1cd+2cd, C1+2a</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.277</td>
<td>0.105</td>
<td></td>
</tr>
</tbody>
</table>

* Listed by Matsubayashi et al. (in press). Arctogalidia trivirgata was added. "Two species were pooled. Significantly abundant, P < 0.05
IUCN status of each species is also given: EN-endangered; VU-vulnerable; NT-near threatened; LC-least concern; DD-data deficient
Table 2. Summary of mammalian density in Deramakot and diet type

<table>
<thead>
<tr>
<th>Survey method</th>
<th>Species</th>
<th>Density index</th>
<th>CNV / RIL</th>
<th>Diet type</th>
<th>% Frugivory</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera-trapping</td>
<td>Mouse-deer</td>
<td>0.050</td>
<td>0.025</td>
<td>0.50</td>
<td>Frugivore/Browser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malay civet</td>
<td>0.040</td>
<td>0.026</td>
<td>0.65</td>
<td>Carnivore/Insectivore</td>
<td>15% (Davis 1962)</td>
</tr>
<tr>
<td></td>
<td>Bearded pig</td>
<td>0.040</td>
<td>0.019</td>
<td>0.48</td>
<td>Omnivore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pig-tailed macaque</td>
<td>0.043</td>
<td>0.010</td>
<td>0.23</td>
<td>Frugivore</td>
<td>88% (Caldecott 1986)</td>
</tr>
<tr>
<td></td>
<td>Muntjac</td>
<td>0.025</td>
<td>0.000</td>
<td>0</td>
<td>Frugivore/Browser</td>
<td></td>
</tr>
<tr>
<td>Aerial nest count</td>
<td>Orangutan</td>
<td>1.50</td>
<td>0.62</td>
<td>0.41</td>
<td>Frugivore</td>
<td>100 - 21% (Knott 1998)</td>
</tr>
</tbody>
</table>

a Only species trapped > 9 times were listed.
b Data from Ancrenaz et al. (2005)
Fig. 1.
Species accumulation curves in the reduced-impact logged forest (RIL) and the conventionally logged forest (CNV).